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Abstract  

 

Differential Evolution (DE) is a population algorithm 

widely used in the solution of numerical optimization 

problems in continuous spaces. Sometimes, after 

mutation, DE generates solutions that exceed the search 

space, a requirement that justifies the implementation of 

Boundary Management Methods (BLM). This paper 

presents an innovative MML called "Historical 

Interpolation Repair", which relies on data from previous 

successful solutions to adjust those that deviate from the 

search space. Through a series of comparative 

experiments, it is shown that this approach outperforms 

other boundary handling methods. In fact, even under the 

most unfavorable conditions, the proposed method 

maintains high performance, suggesting that it is a solid 

choice for boundary management in DE. 
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Resumen 

 

La Evolución Diferencial (ED) es un algoritmo 

poblacional ampliamente utilizado en la solución de 

problemas de optimización numérica en espacios 

continuos. En ocasiones, después de la mutación, ED 

genera soluciones que exceden el espacio de búsqueda, 

requerimiento que justifica la implementación de los 

Métodos para el Manejo de Límites (MML). Este artículo 

presenta un innovador MML llamado "Reparación por 

Interpolación Histórica", que se basa en los datos de 

soluciones exitosas anteriores para ajustar las que se 

desvían del espacio de búsqueda. Mediante una serie de 

experimentos comparativos, se demuestra que este 

enfoque supera a otros métodos de manejo de límites. De 

hecho, incluso en las condiciones más desfavorables, el 

método propuesto mantiene un alto rendimiento, lo que 

sugiere que es una opción sólida para la gestión de límites 

en ED. 
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Introduction 

 

Evolutionary computation is a subfield of 

artificial intelligence, which includes heuristic 

search algorithms that are inspired by biological 

evolution and its processes, such as natural 

selection and genetics. Such algorithms simulate 

processes such as mutation, recombination (or 

crossover) and survival of the fittest (or 

selection). 

 

Generally, evolutionary computational 

algorithms start from a set of possible solutions 

to a problem and 'evolve' them over many 

generations (Eiben & Smith, 2015). Those 

solutions that are most effective in each 

generation are selected and modified to 

constitute the next generation of possible 

solutions. This process is repeated until a 

sufficiently effective solution is found or until 

other termination criteria are met. 

 

Evolutionary Algorithms (EA) have 

gained recognition by demonstrating their high 

ability to solve complex numerical optimisation 

problems, whether combinatorial or continuous 

(Zhang, Peng, Zhang & Wang, 2023). This has 

been achieved through the implementation of 

techniques such as genetic algorithms, genetic 

programming, evolutionary strategies and 

differential evolution, among others. 

 

Despite their effectiveness, certain EAs, 

such as Differential Evolution, encounter a 

specific challenge when dealing with problems 

with boundary constraints on the decision 

variables. These algorithms were originally 

designed to operate in search spaces without 

boundary constraints. 

 

Boundary management, i.e., the way in 

which the algorithm is kept within the valid 

ranges defined for each design variable in a 

continuous space (the search space), is an aspect 

that is still being explored. This mechanism is 

essential in algorithms such as Differential 

Evolution (DE) and Evolutionary Strategies 

(ES), since their variation operators (such as 

crossover and mutation) do not ensure that the 

generated solutions stay within the bounds of the 

search space. 

 

 

 

 

To address this problem, in algorithms 

such as ED and EE, boundary management 

methods are used. These methods are 

responsible for fitting solutions that lie outside 

the search space. In recent years, several studies 

have been published that reveal how the choice 

of boundary handling method can have a major 

impact on the quality of the solutions generated 

by the DE algorithm (Nocedal & Wright, 2006). 

 

It is understood that there is no universal 

method for boundary handling that is optimal for 

all problems. However, this is seen as an 

opportunity to develop new methods that can 

improve the performance of the DE algorithm. 

With this in mind, this paper proposes a new 

method called "Historical Interpolation Repair", 

which uses information from previous 

successful solutions to adjust solutions that lie 

outside the search space. This method has been 

designed to improve the handling of boundary 

constraints in the context of algorithms such as 

Differential Evolution (DE). 

 

Problem statement  

 

Numerical Optimization Problems (NOP) arise 

in a wide range of situations in science and 

engineering. Their objective is to determine the 

values of a specific set of decision variables, 

through the optimisation of an objective 

function, provided that both the limits set for the 

variables and the functional constraints are met 

(Storn & Price, 1997; Eberhart, Kennedy et al., 

1995). This type of problem is defined as 

follows: 

  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑟: 𝑓(�⃗�)                                                                  (1) 

 

Subject to: 

 

𝑙𝑗 ≤ 𝑥𝑗  ≤ 𝑢𝑗                                                                    (2) 

 

Where �⃗� =  [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇 ∈  𝑅𝑛 

represents a solution vector and f(x ⃗ ) is the 

objective function. 

 

Equation 2 sets the bounds on the variables 

in the solution vector, which restrict the possible 

values for the decision variables. Each variable 

x_j in x ⃗ is bounded by a lower and an upper 

bound, which together define the search space S. 
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Numerical Optimisation Problems are 

often tackled by traditional mathematical 

methods, although these may be insufficient for 

large-scale or complex problems. In contrast, 

Evolutionary Algorithms such as Differential 

Evolution have proven to be powerful 

alternatives, especially in situations where 

detailed information about the objective function 

is limited or uncertain. This article focuses on the 

application and analysis of Differential 

Evolution to solve this kind of problems, 

detailing its implementation in the following 

section. 

 

Differential evolution 

 

Differential evolution (DE) is a population-

based stochastic search algorithm for solving 

optimisation problems in continuous spaces 

(Storn & Price, 1997). The DE algorithm aims to 

evolve a population of n-dimensional NP-

vectors representing candidate solutions in the 

generation g: 

 

�⃗�𝑖
𝑔

 = {𝑥𝑖,1
𝑔

, 𝑥𝑖,2
𝑔

, … , 𝑥𝑖,𝑛
𝑔

}, 𝒾 = 1, … , 𝑁𝑃                 (3) 

 

Where 𝑥𝑖,𝑗 represents the j-th component 

of solution i. The initial population is generated 

uniformly at random within the predefined lower 

l_j and upper u_j limits for each variable x_(i,j). 

The DE consists mainly of applying three 

operations that are repeated generation after 

generation until a termination criterion is 

satisfied. These operations are described below. 

 

Mutation operator. For each target vector 

or "parent vector" x ⃗_i^(g-1) in generation g-1, 

a mutant vector v ⃗ _i^gen generation g is created. 

The mutant vector can be created by some 

mutation strategy such as DE/rand/1/bin, 

described in Equation 4. 

 

�⃗�𝑖
𝑔

 =  �⃗�𝑟1
𝑔−1

+ 𝐹 × (�⃗�𝑟2
𝑔−1

−  �⃗�𝑟3
𝑔−1

)                      (4) 

 

Where r1≠r2≠r3≠i are indices generated 

within the range [1,NP]. F>0 is a real value 

representing a mutation scaling factor. Other DE 

variants exist, such as DE/best/1/bin and 

DE/rand/1/exp (Mezura-Montes, Miranda-

Varela, & Gómez-Ramón, 2010), however, the 

present study focuses only on the DE/rand/1/bin 

variant.  

 

 

 

The mutation operator can generate vector 

values outside the limits of each variable. 

Therefore, it is necessary to apply some method 

for handling boundary constraints in order to 

keep the search within the space defined by the 

bounds of each design variable. 

 

Crossover operator. The crossover 

operator generates a test vector (child) by 

recombining the target vector and its 

corresponding mutant vector, as shown in 

Equation 5. 

 

𝑢𝑖,𝑗
𝑔 

= {
𝑢𝑖,𝑗

𝑔
    if(rand𝑗[0,1] ≤ CR) or j = 𝑗𝑟𝑎𝑛𝑑,

 𝑥𝑖,𝑗
𝑔

           de lo contrario                        
   (5) 

 

Where 𝑗 = 1, … , 𝑛, 𝐶𝑅 ∈ [0,1] is a user-

defined value indicating how similar the test 

vector will be with respect to the mutant vector, 

𝑟𝑎𝑛𝑑𝑗 is a randomly generated real value 

between 0 and 1, and 𝑗𝑟𝑟𝑎𝑛𝑑 is a randomly 

generated integer within the range [1,n], its 

purpose is to avoid duplicates between the target 

vector and the test vector. 

 

Selection operator. Finally, the selection 

operator is summarised in Equation 6, where the 

best vector is selected based on the fitness values 

between the target vector and its corresponding 

test vector. The vector with the best fitness value 

will remain in the next generation. 

 

�⃗�𝑖
𝑔

= {
�⃗⃗�𝑖

𝑔
        if  𝑓(�⃗⃗�𝑖

𝑔
) < 𝑓(�⃗�𝑖

𝑔−1
),

�⃗�𝑖
𝑔−1

               de lo contrario
                         (6) 

 

The Differential Evolution algorithm has 

consistently demonstrated its effectiveness in 

solving complex engineering problems and 

applications related to numerical optimisation in 

continuous spaces. However, as previously 

indicated, it experiences challenges in handling 

boundary constraints. It is common for its 

mutation operator to generate solutions beyond 

the defined search space, S, which implies the 

need to incorporate boundary constraint 

handling methods. 

 

Boundary constraint handling methods 

 

Boundary Constraint Handling Methods are 

used to ensure that all components of the 

solution vectors lie within the lower and upper 

bounds of the decision variables. 
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These methods are fundamental in DE and 

other evolutionary algorithms to maintain 

population feasibility and convergence to 

optimal solutions. The choice of these methods 

can significantly influence the quality of the 

solutions produced. The following is a 

description of commonly used methods for 

boundary handling in DE. 

 

Wrapping: 

 

In this method, the search space is 

wrapped in each dimension (Purchla, 

Malanowski, Terlecki, & Arabas, 2004), i.e. the 

search space of each variable is simulated to 

have a periodic shape and can therefore be 

treated as a toroidal space (Zhang, Xie, & Bi, 

2004). For this reason, values leaving the search 

space at the upper boundary are inserted at the 

lower boundary through Equation 7. 

 

𝑥𝑗
𝑐 {

𝑥𝑗                            𝑠𝑖 𝑙𝑗 < 𝑥𝑗 < 𝑢𝑗

𝑢𝑗 − (𝑙𝑗 − 𝑥𝑗)% 𝑝        𝑠𝑖 𝑥𝑗 < 𝑙𝑗

𝑙𝑗 + (𝑥𝑗 − 𝑢𝑗)% 𝑝       𝑠𝑖 𝑥𝑗 > 𝑢𝑗

                     (7) 

 

Where % is the modulus operator and 〖

p=||u〗_j-l_j | represents the range of the 

variable. 

 

Reflection: 

 

In this method, variables that violate limits 

(upper or lower) are reflected from the violated 

limit, by the number of violations (Robinson & 

Rahmat-Samii, 2004; Ronkkonen, Kukkonen, & 

Price, 2005). This method is described in 

Equation 8. 

 

𝑥𝑗
𝑐 =  {  

𝑥𝑗                     𝑠𝑖 𝑙𝑗 ≤  𝑥𝑗 ≤ 𝑢𝑗

2 × 𝑙𝑗 − 𝑥𝑗                 𝑠𝑖 𝑥 < 𝑙𝑗
2 × 𝑢𝑗 − 𝑥𝑗                𝑠𝑖 𝑥𝑗 > 𝑢𝑗

                    (8) 

  

Where 𝑥𝑗
𝑐 is the corrected value, x_j is the 

value that violates some boundary constraint, l_j 

and u_j are the lower and upper bounds of 

variable j, respectively. This process is repeated 

until the generated value is within the bounds. 

  

Boundary method: 

 

 

 

 

 

In this method, also known as Bound or 

Projection, the value of the variable leaving the 

search space is reset to the violated bound (Brest, 

Greiner, Boskovic, Mernik & Zumer, 2006; 

Zhang, Xie, & Bi, 2004). This is expressed in 

Equation 9. 

 

𝑥𝑗
𝑐 {

𝑥𝑗  𝑠𝑖 𝑙𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑗

𝑙𝑗     𝑠𝑖 𝑥𝑗 < 𝑙𝑗
𝑢𝑗     𝑠𝑖 𝑥𝑗 > 𝑢𝑗

                                                  (9) 

 

In  where 𝑥𝑗
𝑐 represents the corrected value 

x_j is the value that violates the bounds of the 

variable, l_j and u_j represent the lower and 

upper bounds of the variable respectively. 

 

Random method: 

 

This method replaces the values of the 

variables that are outside their bounds by 

random values within the lower and upper 

bounds (Lampinen, 2002; Price, Storn, & 

Lampinen, 2005) through Equation 10. 

 

x_j^c=l_j+rand(0,1)×(u_j-l_j )       (10) 

 

Where rand(0,1) returns a random value 

between 0 and 1 with uniform distribution. 

 

Centroid method: 

 

The Centroid method relocates the invalid 

vectors within the search space to the centroid of 

an area formed by k+1 vectors, one of them 

taken from the population and k randomly 

repaired vectors (Juárez-Castillo, Pérez-Castro, 

& Mezura-Montes, 2017) by Equation 11. 

 

The population vector biases the position 

of the corrected vector to an area with a good 

fitness value, while the k random vectors guide 

the position of the corrected vector to new areas 

in the search space. 

 

�⃗�𝒄 = {
�⃗�                     𝑠𝑖∀𝑥𝑗: 𝑙𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑗

�⃗⃗�𝑏𝑒𝑠𝑡+∑ �⃗⃗⃗⃗�𝑟𝑖
𝑘
𝑖=1

𝑘+1
           en otro caso

                      (11) 
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Where �⃗� =  [𝑥1, 𝑥2, … , 𝑥𝑛] is the vector that 

violates the bounds, n represents the number of 

dimensions of the problem to be treated, x ⃗ is 

the corrected vector, x ⃗_best is the best solution 

of the current population. On the other hand, W 

⃗_r1,...,W ⃗_rk are k random vectors (Juárez-

Castillo, Pérez-Castro, & Mezura-Montes, 

2015). The random vectors initially take the 

same values as x ⃗, and subsequently replace 

their invalid values by randomly chosen values 

between their lower bound l_j and upper bound 

u_j, in the same way that a repaired vector is 

generated by the Random method described in 

Equation 10. 

 

It is important to note that the Centroid 

method, originally proposed by Juárez-Castillo 

et al. (2019), was designed to address problems 

with functional constraints, where feasible and 

infeasible solutions exist. However, in this case, 

we are dealing with optimisation problems 

without functional constraints. Therefore, minor 

adjustments have been made to the Centroid 

method to make it suitable for the problems 

presented in this paper. 

 

Res&Ran method: 

 

In the Res&Ran method, when the 

Differential Evolution (DE) mutation operator, 

described in Equation 4, produces an invalid 

solution, the mutation operator is reapplied with 

the expectation of generating a valid solution by 

recreating the random values r1≠r2≠r3. If a valid 

solution is not obtained, this procedure is 

repeated up to 3×n times, where n denotes the 

dimensionality of the problem. In case no valid 

solution vector is obtained after these iterations, 

the Random method is applied (Juárez-Castillo, 

Pérez-Castro, & Mezura-Montes, 2017), as 

described in Equation 10. 

 

Proposed method: 

 

In this paper we propose a new method for 

handling boundary constraints called "Repair by 

Historical Interpolation", this strategy uses 

historical knowledge of the best solutions found 

during the optimisation process to repair invalid 

solutions. While this involves keeping a memory 

of the best solution at each generation, this 

memory is commonly generated in order to 

generate the convergence graphs, so it does not 

involve keeping additional records. 

 

The repair is performed by a weighted 

interpolation between two of the best past 

solutions, s_1 and s_2, those closest to the 

invalid vector, as shown in Equation 12. 

 

�⃗�𝑐 = {

�⃗�                     𝑠𝑖 ∀ 𝑥𝑗 ∶ 𝑙𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑗

𝛼 ∗ 𝑠1 + (1 − 𝛼) ∗ 𝑠2 ∶  𝑠1, 𝑠2 𝜖 ℬ𝑆
                𝑒𝑛 𝑐𝑢𝑎𝑙𝑞𝑢𝑖𝑒𝑟 𝑜𝑡𝑟𝑜 𝑐𝑎𝑠𝑜

           (12) 

 

Where BS represents all the best solutions 

in each generation: 

 

ℬ𝒮 = {𝑏𝑠1, 𝑏𝑠2, … , 𝑏𝑠𝑔 }                                            (13) 

 

Such that 〖bs〗^g represents the best 

solution in generation g. s_1 and s_2 are 

elements of BS, such that s_1 is the closest 

solution to x ⃗ and s_2 the second closest 

solution to x ⃗. To obtain the distance from 〖bs

〗^g to x ⃗, the Euclidean distance formula is 

used. α is an interpolation parameter that takes 

values between 0 and 1 and determines the 

relative weighting of s_1 and s_1 at the 

interpolated point x ⃗. 

 

Materials and methods 

 

An experiment was conducted to assess the 

performance of the proposed Historical 

Interpolation Repair method by contrasting it 

against six other methods in solving a set of 

optimisation problems. This analysis took into 

account the following guidelines: 

35 independent runs of the Differential 

Evolution (DE) algorithm were performed to 

address a benchmark consisting of 10 

unconstrained continuous space numerical 

optimisation problems. The problems analysed, 

all of them minimisation problems, were: 

Ackley, Beale, Griewank, Michalewicz, 

Rastrigin, Rosenbrock, Schwefel, 

Schwefel_222, Sphere and Styblinski-Tang, all 

in 10 dimensions. 

 

In each run of the ED algorithm, 100 

generations were performed with the 

DE/rand/1/bin strategy, with F=0.7, CR=0.8 and 

population size NP=50, following the 

recommendations of the relevant literature 

(Zhang & Sanderson, 2009; Ronkkonen, 

Kukkonen, & Price, 2005). 
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The same scheme was applied for each of 

the seven boundary management methods 

analysed: Wrapping, Reflection, Centroid, 

Res&Ran, Random, Bound and the Historical 

Interpolation Repair method, which will be 

referred to hereafter as Historic. 

 

Results 

 

Table 1 shows the average fitness value achieved 

over the 35 independent runs, highlighting in 

bold the best result for each of the 10 

optimisation problems. 

 

Additionally, the penultimate column 

shows the resultant value (H) of the Kruskal 

Wallis statistical test, while the p-value is 

presented in the last column. 

 

As can be seen in Table 1, the Historic 

method obtained the best performance in all the 

problems treated, and as can be seen from the 

data generated by the statistical tests, the 

difference between the means is statistically 

significant. 
 

 
 

Table 1 Comparison of the performance of 7 boundary 

management methods for DE on 10 optimisation 

problems, with summary results of Kruskal Wallis 

statistical tests. 

 

 
 

Figure 1 Comparison of methods for handling boundary 

constraints in DE: Distribution of fitness values obtained 

in 35 independent runs for the Ackley problem. 

 

 
 
Figure 2 Comparison of methods for handling boundary 

constraints in DE: Distribution of fitness values obtained 

in 35 independent runs for the Michalewicz problem 

 

After Historic, the second best performing 

method was Centroid, since it obtained the 

second best performance in 8 of the 10 problems 

treated, only being surpassed by Wrapping in the 

Schwefel problem and by the Res&Ran and 

Random methods in the Styblinski-Tang 

problem. 

 

To complement the above, Figures 1 and 2 

present two box plots illustrating the distribution 

of the fitness values achieved in the 35 

independent runs for each of the 7 methods 

studied, in the Ackley and Michalewicz 

problems. For reasons of space, only 2 of the 10 

problems evaluated are included, however, the 

rest of them show a similar trend. 

 

In these graphs, a significant advantage of 

the Historic method for handling boundary 

constraints in the DE algorithm can be clearly 

observed when solving the Ackley and 

Michalewicz optimisation problems. In an 

optimisation scenario, a lower fitness value is 

preferable, which puts the Historic method in a 

prominent position. Not only does this method 

show a noticeably lower mean compared to the 

other methods, but also its highest values 

(represented by the upper "whiskers" in the box) 

are below the minimum values achieved by the 

other methods. This suggests an exceptionally 

consistent and efficient performance of the 

Historic method in terms of handling boundary 

constraints during optimisation, even in its 

worst-case performance scenarios. These 

observations highlight the effectiveness of 

Historic and set a strong precedent for its use in 

future DE applications. 
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Figure 3 Comparison of Convergence of Methods for 

Handling Boundary Constraints in the Ackley Problem 

using Differential Evolution. 

 

 
 

Figure 4 Comparison of Convergence of Methods for 

Handling Boundary Constraints in the Michalewicz 

Problem using Differential Evolution. 
 

Finally, Figures 3 and 4 present two 

convergence plots for each of the seven methods 

compared in the Ackley and Michalewicz 

functions, which show the progress of the 

objective function over the generations for each 

method. Looking closely at these graphs, it is 

clear that the Historic method shows a much 

steeper downward trend than the other methods. 

Its rapid and steady decline indicates an effective 

convergence to optimal solutions. In addition, it 

is noted that the Centroid method was the second 

best, although its convergence rate is 

considerably slower compared to the Historic 

method. 

 

In the last generation represented in the 

graphs, the results confirm the superiority of the 

Historic method over the others. While the other 

methods are in relative proximity in terms of 

objective function values, the Historic method 

stands out by being significantly below the other 

methods, thus demonstrating its effectiveness in 

obtaining more optimal solutions compared to 

the alternative approaches. 

 

 

 

 

 

 

Conclusions 

 

The handling of boundary constraints in 

Differential Evolution (DE) is a crucial 

challenge that affects the quality of solutions. 

This paper proposes a new method for handling 

boundary constraints, called "Historic 

Interpolation Repair" (Historic), which uses 

information from successful solutions to correct 

those that fall out of the search space, 

significantly improving the performance of DE. 

 

The study's findings, based on tests 

covering ten numerical optimisation problems, 

indicate that the Historic method outperforms six 

methods tested, with its worst results still 

outperforming the best of the other methods, 

showing remarkable robustness and reliability. 

 

The second best performing method was 

Centroid, which, like Historic, uses information 

from other solutions to guide the correction of 

invalid solutions.  

 

The above seems to suggest that repair 

methods that employ some kind of information 

regarding the evolutionary process might show 

better performance, leaving open the possibility 

of exploring new, informed methods that employ 

information from solutions, either from the 

current population or from previous generations. 

 

In summary, "Repair by Historical 

Interpolation" represents a breakthrough in the 

handling of boundary constraints in DE, 

improving its effectiveness and efficiency and 

providing valuable guidance for future proposals 

for repair methods. 
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