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Abstract 

 

In recent years, there has been an increasing interest in Data 

Science and Machine Learning in different topics like 

financial and health, this have led to start using these methods 

on engineer applications. This paper is focus on identify the 

equivalent unbalance on Squeeze Film Damper – SFD 

bearing using a recent machine learning technique “Sparse 

Identification of Nonlinear Dynamics – SINDy”. Four 

different cases will be examined from Bonello’s work, all of 

which we introduce 4 different conditions of noise to the 

acceleration of the system. The data for this work was 

obtained via a simulation of the SFD system reported on 

Bonello’s thesis. From the simulation only the last 20 cycles 

were used to feed the SINDy. This study uses a combinatorial 

polynomial search space over preselected functions with the 

purpose to identify the equivalent imbalances. Both 

hyperparameters: the degree of the combinatory 𝑘 and the 

threshold value 𝜆 remaining static during all the study. There 

was no error between the original equations and the identified 

system. 

 

 

 

 

 

 

Sparse Identification of Nonlinear dynamics, Squeeze 

Film Damper, Equivalent unbalance 

 

Resumen  

 

Mediante el algoritmo de aprendizaje automático de 

“Identificación escasa de dinámicas no lineales – Sparse 

identification of nonlinear dynamics SINDy” se identificó el 

desbalance equivalente en un sistema rotodinámico soportado 

por un cojinete del tipo squeeze film damper bearing – SFD. 

Se identificaron los desbalances equivalentes a 4 condiciones 

operativas estacionarias, teniendo como parámetro de entrada 

la aceleración del sistema. Los datos empleados para la 

alimentación del algoritmo SINDy fueron obtenidos a través 

de una simulación del sistema rotodinámico SFD en Matlab 

usando un modelo matemático. Solamente fueron tomados 

los últimos 20 ciclos de la simulación. Un espacio de 

búsqueda de combinatoria polinomial de grado 𝐾 = 3 fue 

empleado sobre las variables independientes del sistema para 

la identificación de los desbalances equivalentes empleando 

SINDy. De igual manera los desbalances equivalentes fueron 

obtenidos a tres distintas condiciones de ruido, esto con la 

finalidad de probar la robustez de SINDy. Los 

hiperparámetros de la herramienta; el grado de la 

combinatoria K y el valor de corte 𝜆 permanecieron estáticos 

durante los 4 casos bajo las distintas condiciones de ruido. El 

error entre el sistema modelado con las ecuaciones originales 

y el sistema identificado en este trabajo fue prácticamente 

nulo. 

 

Identificación escasa de dinámicas no lineales, Desbalance 

equivalente, Rotodinámica 
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1. Introduction 

 

Currently, the wide digital expansion has had 

several consequences such as industry 4.0, the 

internet of things, and the personal use of the 

internet by 62.5% of the world's population, 

have led to a trend of collecting a large amount 

of data. To be exploited, several methodologies 

have been developed under the term "machine 

learning", with the purpose of predicting, 

clustering, discovering patterns of behaviors, 

classifying and making decisions. These 

methodologies are widely used in the areas of 

business, cellular applications and security, with 

beneficial results. These methodologies should 

be leveraged in the field of science and 

engineering (S. Brunton et al. 2020).  

 

Unlike business areas where the goal of 

using these methodologies is prediction, science 

and engineering has specific needs such as: 

 

 Interpretable models for scientific 

understanding and safety 

 Models for general problems 

 Models robust to noise 

 Models obtained with little data or with 

low frequency of measurement.  

 

In some or most cases, popular methods 

such as neural networks or regression models 

fail to satisfy one or more of the requirements of 

science and engineering.   

 

The Sparse Identification of Nonlinear 

Dynamics (SINDy) algorithm presents an 

opportunity to take advantage of the benefits of 

machine learning methods in science and 

engineering by meeting their needs. This is 

because SINDy presents the advantage of 

identifying mathematical models using data (S. 

Brunton 2016). 

 

Within the field of aeronautical 

engineering, a recurring problem is the 

unbalance of aerojet engines. A case identified 

in previous works are engines using "squeeze 

film damper" SFD type supports as are the Rolls-

Royce engines of the BR700 family (V. Dicken 

et al. 2007), which are found in the following 

aircraft.  

 

 Boeing 717, B-52 

 Dassault Falcon 10X 

 Gulfstream V, G550, G650, G700, G800 

 Tupolev TU-334 

 BAE Nimrod MRA4 

 Bombardier Global Express 

 

This unbalance generates maintenance 

costs because it is necessary to completely 

disassemble the engine to find the disc/blade that 

is out of balance. To solve this problem, inverse 

problem type approaches have been proposed 

using autonomous learning methods, mainly 

using neural networks, where the objective is to 

find the unbalance of the system using only the 

vibration of the engine casing (S. Torres et al. 

2019). 

 

An approach employing SINDy is 

presented in this paper, with the objective to 

prove the goodness of this type of 

methodologies. The work focuses on identifying 

the equivalent unbalance coefficient, using only 

the information of the acceleration, forces and 

periodic behaviors of the SFD system. These 

data were obtained through a simulation based 

on the work of Bonello (2002). Beyond the 

objective of this article, its purpose is to develop 

this type of methodologies so that in the future 

they can be used in more complex systems, such 

as solving inverse problems. This would lead to 

experimental applications with non-invasive 

techniques as in the research of S. Torres et al. 

(2019). 

 

2. SFD Model 

 

Squeeze-film Damper (SFD) bearings provide a 

very cost effective means of introducing 

damping into aero engine rotors. This is 

achieved by pumping oil into the annular gap 

between the outside of the bearing element and 

the SFD housing (see Figure 1).   

 

 
 
Figure 1 SFD Schematic  

(San Andres 2018) 
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In Figure 2, a rotodynamic system 

supported by a SFD that was modeled through 

the unsealed short bearing theory is illustrated. 

This system was employed by (P. Bonello, 2002) 

to validate the cavitation model "absolute zero 

cavitation model". This configuration consists of 

a rigid rotor supported on the right side by a self-

aligning bearing and an unsupported SFD on the 

left side. 

 

 
 
Figure 2 Rotodynamic system supported by a SFD  

(R. Holmes et al. 1982) 

 

The system presented in Figure 2 is 

modeled in the work by Bonello (2002) using the 

following equations of motion 

 

𝑀𝑅,𝐽𝑋̈𝐽 = 𝑄𝑥 + 𝑈𝑒𝑞,𝐽𝛺
2 𝑠𝑖𝑛 𝛺𝑡  

 

𝑀𝑅,𝐽𝑌̈𝐽 = 𝑄𝑦  − 𝑈𝑒𝑞,𝐽𝛺
2 𝑐𝑜𝑠 𝛺𝑡 − 𝑊             (1) 

 

where 𝑋𝐽 and 𝑌𝐽 are the displacements in 

[m] of the rotor center J (Journal) from a fixed 

center of the pedestal, 𝛺 is the rotational speed 

in [rad/s], 𝑀𝑅,𝐽 is the effective mass in J, W is 

the static load in J and 𝑈𝑒𝑞,𝐽 is the equivalent 

unbalance in J. In the present work, the equations 

of motion (1) will be used to generate the data 

set required by the SINDy method and validate 

this technique to identify the unbalance 

𝑈𝑒𝑞,𝐽 using different noise scenarios. 

 

3. SINDy 

 

SINDy is a machine learning tool where its main 

advantage is that it generates as output parameter 

mathematical models. To achieve this SINDy 

needs two data sets; the set of independent 

variables 𝑋 and the set of dependent variables 𝑋 

resulting in the identification of a model such 

that 𝑋̇(𝑋) (Brunton et al. 2016). For this, SINDy 

generates a search space Θ. The search space Θ 

will contain a set of possible functions created 

from X such that Θ(X), these search space 

functions are the candidates to describe 𝑋̇ The 

goal of SINDy will be to solve the system. 

𝐗̇ = 𝚯(𝐗)𝚵                                          (2) 

 

Where the output of the algorithm, i.e. 

the identified model is in the sparse matrix Ξ in 

its coefficients and structure. The SINDy 

components have the following structure. 

 

𝐗 = [

𝑥1(𝑡1) 𝑥2(𝑡1) … 𝑥𝑀(𝑡1)
𝑥1(𝑡2) 𝑥2(𝑡2) … 𝑥𝑀(𝑡2)

⋮ ⋮ ⋱ ⋮
𝑥1(𝑡𝑁) 𝑥2(𝑡𝑁) … 𝑥𝑀(𝑡𝑁)

]

𝑁×𝑀

  

 

𝐗̇ =  [

𝑥̇1(𝑡1) 𝑥̇2(𝑡1) … 𝑥̇𝐿(𝑡1)
𝑥̇1(𝑡2) 𝑥̇2(𝑡2) … 𝑥̇𝐿(𝑡2)

⋮ ⋮ ⋱ ⋮
𝑥̇1(𝑡𝑁) 𝑥̇2(𝑡𝑁) … 𝑥̇𝐿(𝑡𝑁)

]

𝑁×𝐿

        (3) 

 

Each column of Θ(X) is a function. 

 

𝚯(𝐗) = [

𝑓1(𝑥(𝑡1)) 𝑓2(𝑥(𝑡1)) … 𝑓𝑆(𝑥(𝑡1))

𝑓1(𝑥𝑖(𝑡2)) 𝑓2(𝑥(𝑡2)) … 𝑓𝑆(𝑥(𝑡2))
⋮ ⋮ … ⋮

𝑓1(𝑥(𝑡𝑁)) 𝑓2(𝑥(𝑡𝑁)) … 𝑓𝑆(𝑥(𝑡𝑁))

]

𝑁𝑋𝑆

       (4) 

 

The dimensions of the system are as 

follows. 

 

𝐗̇𝑁×𝐿 = 𝚯(X)𝑁×𝑆Ξ𝑆×𝐿                          (5)

     

N-Number of data 

M-Number of independent variables 

S- Number of proposed functions 

L- Number of functions to identify or number of 

dependent variables. 

 

3.1. Polynomial Combinatorial Search Space 

 

A polynomial combinatorial combinatorial 

search space will be used for this work, having 

independent variables 𝑋 = [𝑥1, 𝑥2, ⋯ 𝑥𝑀]. A 

search space can be created from the 

combination repeated k times, the size of the 

search space is described by the combination 

with repetition of 𝐶𝑘(𝑀)
′ . For the search space to 

go through the whole set of possible 

polynomials, generated from 𝑋𝑀 reaching up to 

degree k, it is necessary to add unity to our set of 

independent variables; so that𝑋𝑀+1  =
 1, 𝑥1, 𝑥2, ⋯ 𝑥𝑀, the size of the search space will 

be the combinatorial with repetition of degree k. 

    

𝐂𝑘(𝑀+1)
′ = [1𝑁×1 𝐶𝑁×𝑀

1  𝐶𝑁×𝑅𝑘 
𝑘 ⋯𝐶𝑁×𝑅𝐾

𝐾  ],   

𝑘 = 2,3, … , 𝐾.                                                    (6) 

 

Where 𝑅𝑘 = (𝑘 + 1)(𝑀 − 1) 

 



11 

Article                                                  Journal-Mathematical and Quantitative Methods 
        June, 2022 Vol.6 No.10 8-17 

 

 
ISSN 2531-2979 

RINOE® All rights reserved 
ZIRION-FLORES, Maximiliano, ESCOBEDO-ALVA, Jonathan 

Omega, TORRES-CEDILLO, Sergio Guillermo and REYES-SOLIS, 

Alberto. Unbalance identification method based on SINDy applied to an 
SFD rotordynamic system. Journal-Mathematical and Quantitative 

Methods. 2022 

The number of proposed functions is 

fined as follows 

 

𝑆 =  1 + 𝑀 + 𝑅2 + 𝑅3 + ⋯ + 𝑅𝑘  
  

As an example, the second and third 

elements of (6) would be as follows: 

 

𝐂1 = [

𝑥1(𝑡1) 𝑥2(𝑡1) ⋯ 𝑥𝑀(𝑡1)
𝑥1(𝑡2) 𝑥2(𝑡2) ⋯ 𝑥𝑀(𝑡2)

⋮ ⋮ ⋮ ⋮
𝑥1(𝑡𝑁) 𝑥2(𝑡𝑁) ⋯ 𝑥𝑀(𝑡𝑁)

]  

 

𝐂2 =

[
 
 
 
𝑥1

2(𝑡1) ⋯ 𝑥1(𝑡1)𝑥2(𝑡1) ⋯ 𝑥𝑀
2 (𝑡1)

𝑥1
2(𝑡2) ⋯ 𝑥1(𝑡2)𝑥2(𝑡2) ⋯ 𝑥𝑀

2 (𝑡2)
⋮ ⋮ ⋮ ⋮ ⋮

𝑥1
2(𝑡𝑁) ⋯ 𝑥1(𝑡𝑁)𝑥2(𝑡𝑁) ⋯ 𝑥𝑀

2 (𝑡𝑁)]
 
 
 
  (7) 

 

𝐂𝑛 It will then be a matrix with all the 

combinations between the different state 

variables that form monomials of degree n. 

 

Finally, to clarify this structure, the 

following example is presented where k=3 and 

M=2. 

 

𝐗𝑀 = [𝑥 , 𝑦],  
 

𝐗𝑀+1 = [1, 𝑥, 𝑦],  
 

𝐗𝑀+1 = [

1 𝑥(𝑡1) 𝑦(𝑡1)
1 𝑥(𝑡2) 𝑦(𝑡2)
⋮ ⋮ ⋮
1 𝑥(𝑡𝑁) 𝑦(𝑡𝑁)

]

𝑁×(𝑀+1)

,  

 

𝐂𝑘(𝑀+1)
′ = [1𝑁×1 𝐶𝑁×𝑀

1  𝐶𝑁×𝑅2 
2  𝐶𝑁×𝑅3 

3  ],     

  

𝑅2 = 3 , 𝑅3 = 4, 
 

Accordingly, you will have: 

 

𝑆 =  10, 

 

𝐂1 = [

𝑥(𝑡1) 𝑦(𝑡1)
𝑥(𝑡2) 𝑦(𝑡2)

⋮ ⋮
𝑥(𝑡𝑁) 𝑦(𝑡𝑁)

],  

 

𝐂2 =

[
 
 
 
𝑥2(𝑡1) 𝑥(𝑡1)𝑦(𝑡1) 𝑦2(𝑡1)

𝑥2(𝑡2) 𝑥(𝑡2)𝑦(𝑡2) 𝑦2(𝑡2)
⋮ ⋮ ⋮

𝑥2(𝑡𝑁) 𝑥(𝑡𝑁)𝑦(𝑡𝑁) 𝑦2(𝑡𝑁)]
 
 
 
,  

 

𝐶3 =

[
 
 
 
𝑥3(𝑡1) 𝑥2(𝑡1)𝑦(𝑡1) 𝑥(𝑡1)𝑦

2(𝑡1) 𝑦3(𝑡1)

𝑥3(𝑡2) 𝑥2(𝑡2)𝑦(𝑡2) 𝑥(𝑡2)𝑦
2(𝑡2) 𝑦3(𝑡2)

⋮ ⋮ ⋮ ⋮
𝑥3(𝑡𝑁) 𝑥2(𝑡𝑁)𝑦(𝑡𝑁) 𝑥(𝑡 𝑁)𝑦2(𝑡𝑁) 𝑦3(𝑡𝑁)]

 
 
 
  (8)

      

3.2. System resolution  

 

The matrix Θ(X)𝑁×𝑆 has a rectangular structure 

such that in most cases 𝑁 ≫ 𝑆, in addition Ξ, 

containing coefficients that rule out proposed 

functions, will be a sparse matrix, for such 

reasons it is necessary to use methods that solve 

systems with this type of matrices. For this work 

we will use least squares minimizing the 

Euclidean space under the norm-2. 

 

‖𝑏 − 𝑎𝑥‖      (9) 

 

Together with an iterative cutoff 

function, which under a parameter λ cuts off all 

values below it (Brunton et el. 2016).  

 

4. Lorenz attractor 

 

To test the capabilities of SINDy and to clarify a 

little more its operation we will use a 

deterministic, chaotic, nonlinear and coupled 

system, as is the Lorenz Attractor, for this we 

will use a simulation of its mathematical model. 

 

 ẋ =  σ(y − x)                    

 ẏ =  x(ρ − z) − y                                       

 ż =  xy − βz                     (10) 

 

With the following values in their 

coefficients. 

 

σ = 10                    

β = 8/3                                       

ρ = 28                                (11) 

 

According to eq. (10) the positions 𝑋 =
𝑥, 𝑦, 𝑧 are the independent variables with which 

we will generate Θ(X) and the accelerations 𝑋̇ =
𝑥̇, 𝑦̇, 𝑧̇ are the dependent variables that we will 

describe from SINDy. 

 

After simulating, generating the 

polynomial combinatorial search space and 

solving for Ξ, we obtain the structure and 

coefficients identified by SINDy as shown in eq. 

(12)   

 



12 

Article                                                  Journal-Mathematical and Quantitative Methods 
        June, 2022 Vol.6 No.10 8-17 

 

 
ISSN 2531-2979 

RINOE® All rights reserved 
ZIRION-FLORES, Maximiliano, ESCOBEDO-ALVA, Jonathan 

Omega, TORRES-CEDILLO, Sergio Guillermo and REYES-SOLIS, 

Alberto. Unbalance identification method based on SINDy applied to an 
SFD rotordynamic system. Journal-Mathematical and Quantitative 

Methods. 2022 

𝚵 =

[
 
 
 
 
 
 
 
 
 

0 0 0
−9.99999975 28.00000994 0
10.00000388 −1.0000246 0

0 0 −2.6666683
0 0 0
0 0 0.99999986
0 −1.0000002 0
0 0 0
⋮ ⋮ ⋮
0 0 0 ]

 
 
 
 
 
 
 
 
 

. (12) 

 

The first row of the Ξcorresponds to the 

coefficients identified for each dependent 

variable corresponding to the function of the first 

column of the search space matrix Θ, for the case 

of a polynomial combinatorial search space 

defined in eq. (4) the first value corresponds to 

unity, and for this identification all the 

coefficients present a value of zero. For the 

second row of the matrix Ξ following the order 

of the polynomial combinatorial search space we 

have that correspond to the coefficients assigned 

to the function x, for the dependent variables 

𝑥̇, 𝑦̇. To finish with the example, in the fourth 

row the coefficients assigned to z, in the sixth to 

xy, and in the seventh to xz. From row 7 onwards 

of eq.(12) the matrix Ξ presents 0 in all its values.  

The rows of matrix Ξ follow the order of the 

columns of matrix Θ of the polynomial 

combinatorial combinatorial search space. So 

the mathematical model of the Lorenz attractor 

identified with SINDy is as follows. 

 

ẋ ≈  10(y − x),                    
ẏ ≈  x(28 − z) − y,                                       

ż ≈  xy −
8

3
z.                     (13) 

 

5. Identification of the equivalent unbalance 

 

The model is dimensioned in the original work 

of Bonello (2002), in which several cases of 

dimensioned unbalance were tested at a constant 

RPM of 3100. For this study we worked with the 

dimensioned equivalent unbalance. Table 1 is an 

extract of the cases from the work of Bonello 

(2002) where the second column corresponds to 

the dimensionless values of the unbalance and 

the third to the dimensionalized values. The 

algebraic relation is shown in eq.(14) 

 

𝑈̂ =  
𝑢

𝑐𝑟
   

 

𝑈𝑒𝑞 = 𝑚𝑒𝑞 𝑢                                                   (14) 

 

 

 

Where 𝑈̂ is the dimensionless unbalance, 

u is the eccentricity of the system, 𝑐𝑟 is the 

viscosity of the oil film, 𝑚𝑒𝑞 is the effective 

weight in the “journal” (supported section of the 

shaft) and U_eq is the dimensioned “journal” 

unbalance. 

 
Cases 𝑼̂ 𝑼𝒆𝒒 [kg*m] 

base 0.90 0.0034 

1 0.74 0.0028 

2 1.06 0.0040 

3 1.47 0.0055 

 
Table 1 Equivalent unbalance values  

(Bonello 2002) 

 

This change in the equivalent unbalance 

generates changes in the accelerations of eq. (1). 

Which in turn modify the behavior of the orbits 

of the support displacements shown in figure (2). 

 

 
 
Figure 3 Behavior of the journal with different equivalent 

unbalances 

 

From each of the simulations based on 

eq. (1) with the different cases mentioned, data 

were taken according to eq. (15) where 𝑋 

represents the set of independent variables and 𝑋̇ 

the set of dependent variables with which SINDy 

will work. So it will identify 4 models in the 

form 𝑋̇(𝑋). 

 

𝐗 =   [
𝑄𝑥

𝑀𝑅,𝐽
 ,

𝑄𝑦

𝑀𝑅,𝐽
,
Ω2 sinΩ𝑡

𝑀𝑅,𝐽
,
Ω2 cosΩ𝑡

𝑀𝑅,𝐽
]  

 

𝐗̇ =  [𝑋̈𝐽, 𝑌̈𝐽]              (15) 

 

The polynomial combinatorial search 

space will be generated with 𝐾 =  3, so that 𝑆 =
 35, functions with which SINDy will perform 

the identification.  
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On the first column of the search space, 

which represents the unit, a modification was 

made, multiplying it all by 𝑊/𝑀𝑅,𝐽,, to facilitate 

the process of identification of the imbalance by 

means of SINDy.  

 

Exemplifying on the base case, taking 

into account the form of the search space of eq. 

(4) the matrix Ξ has the following structure; 

 

𝚵 =

[
 
 
 
 
 
 
 

0 −1.00000541
1.00000126 0

0 1.00000479
0.00337285 0

0 −0.00337282
0 0
⋮ ⋮
0 0 ]

 
 
 
 
 
 
 

 ,           (16) 

 

so that the coefficient of the first row 

corresponds to the function 𝑊/𝑀𝑅,𝐽 where it has 

a coefficient in the second row corresponding to 

the behavior of eq. (1) for 𝑌̈𝐽. Continuing, the 

second row corresponds to the function 
𝑄𝑥

𝑀𝑅,𝐽
 

which has a coefficient in the first column 

corresponding to 𝑋̈𝐽. In such a way that by means 

of SINDy we identify the unbalance coefficient 

𝑈𝑒𝑞  in X by analyzing the coefficient in row 4 

in column 1 and for the unbalance in Y the 

coefficient in row 5 in column 2. 

 

5.1 Introducción de Ruido al Sistema 
 

In practice, it is common for the signals of the 

system vibration responses to be contaminated 

by noise. Therefore, in the present work noise is 

added to the signal of the vector 𝑿̈, which are the 

accelerations of the “journal”. Eq.(17) is 

employed to add noise, 

 

𝑆𝑁𝑅 =   20log10 (
𝐴𝑠𝑒ñ𝑎𝑙

𝐴𝑟𝑢𝑖𝑑𝑜
),                            (17) 

 

where 𝐴𝑠𝑒ñ𝑎𝑙 is the square root of the root 

mean squares (RMS) of the signal without noise 

and 𝐴𝑟𝑢𝑖𝑑𝑜 is the RMS of the noise. The 

scenarios with noise that were analyzed in the 

present work are 20db, 25db and 30db. 

 

 

 

 

 

 

 

6. Results 

 

The identified coefficients with and without 

noise are the equivalent unbalance components 

in each Cartesian plane 𝑈𝑒𝑞,𝐽𝑥
 in 𝑈𝑒𝑞,𝐽𝑦

 are quite 

close to the actual coefficient present in the 

simulations. For the case of this study, the 

absolute value of the coefficients obtained by 

SINDy in the Y direction was reported. 

 
𝑼𝒆𝒒,𝑺𝑰𝑵𝑫𝒚 [kg*m] 

Cases 𝑼𝒆𝒒,𝒓𝒆𝒂𝒍 𝑈𝑒𝑞,𝐽𝑥
 𝑈𝑒𝑞,𝐽𝑦

 

base 0.0034 0.00337285 0.00337282 

1 0.0028 0.00337285 0.0027404 

2 0.0040 0.00396606 0.00397528 

3 0.0055 0.00549583 0.0055019 

 
Table 2 Equivalent Unbalances Identified in each case 

without noise 

 
 𝑼𝒆𝒒,𝑺𝑰𝑵𝑫𝒚 [kg*m] 

Noise 𝑈𝑒𝑞,𝐽𝑥
 𝑈𝑒𝑞,𝐽𝑦

 

db20 0.00337226 0.00337809 

db25 0.00340334 0.00336725 

db30 0.00340334 0.00336725 

 
Table 3 Equivalent Unbalances Identified in the base case 

with noise 

 
 𝑼𝒆𝒒,𝑺𝑰𝑵𝑫𝒚 [kg*m] 

Conditions 𝑈𝑒𝑞,𝐽𝑥
 𝑈𝑒𝑞,𝐽𝑦

 

db20 0.00278523 0.00276609 

db25 0.00275921 0.00278326 

db30 0.00275921 0.00278326 

 
Table 4 Equivalent Unbalances Identified in case 1 with 

noise 

 
 𝑼𝒆𝒒,𝑺𝑰𝑵𝑫𝒚 [kg*m] 

Conditions 𝑈𝑒𝑞,𝐽𝑥
 𝑈𝑒𝑞,𝐽𝑦

 

db20 0.0039892 0.00402207 

db25 0.00398733 0.00398227 

db30 0.00398733 0.00398227 

 
Table 5 Equivalent Unbalances Identified in Case 2 with 

Noise 

 
 𝑼𝒆𝒒,𝑺𝑰𝑵𝑫𝒚 [kg*m] 

Conditions 𝑈𝑒𝑞,𝐽𝑥
 𝑈𝑒𝑞,𝐽𝑦

 

db20 0.00550924 0.00543415 

db25 0.00548761 0.00548324 

db30 0.00548761 0.00548324 

 
Table 6 Equivalent Unbalances Identified in case 3 with 

noise 
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The hyperparameters K = 3  and λ =
0.001 to identify the models remained static 

throughout the 4 cases under the different noise 

conditions. 

 

6.1 Error 

 

The error in each set of cases from table 2 to 6 is 

shown in table 7 to 11 following the same order 

as the cases presented. The error was calculated 

with eq. (18). 

 

𝐸𝑟𝑟𝑜𝑟 (%) = |
𝑉𝑎𝑙𝑜𝑟𝑟𝑒𝑎𝑙− 𝑉𝑎𝑙𝑜𝑟𝑆𝐼𝑁𝐷𝑦

𝑉𝑎𝑙𝑜𝑟𝑟𝑒𝑎𝑙
| × 100        (18) 

 
Error (%) in 

Cases 𝑈𝑒𝑞,𝐽𝑥
 𝑈𝑒𝑞,𝐽𝑦

 

base 0.7985 0.7994 

1 1.1218 2.1286 

2 0.8485 0.618 

3 0.0758 0.0345 

 
Table 7 Error of each Equivalent Unbalance Identified in 

the cases without noise. 

 
 Error (%) in 

Noise 𝑈𝑒𝑞,𝐽𝑥
 𝑈𝑒𝑞,𝐽𝑦

 

db20 0.8159 0.0644 

db25 0.0982 0.9632 

db30 0.0982 0.9632 

 
Table 8 Error of each Equivalent Unbalance Identified in 

the base case 

 
 Error (%) in 

Conditions 𝑈𝑒𝑞,𝐽𝑥
 𝑈𝑒𝑞,𝐽𝑦

 

db20 0.5275 1.2111 

db25 1.4568 0.5979 

db30 1.4568 0.5979 

 
Table 9 Error of each Equivalent Unbalance Identified in 

case 1 

 
 Error (%) in 

Conditions 𝑈𝑒𝑞,𝐽𝑥
 𝑈𝑒𝑞,𝐽𝑦

 

db20 0.27 0.5517 

db25 0.3168 0.4432 

db30 0.3168 0.4432 

 
Table 10 Error of each Equivalent Unbalance Identified in 

case 2 

 
 Error (%) in 

Conditions 𝑈𝑒𝑞,𝐽𝑥
 𝑈𝑒𝑞,𝐽𝑦

 

db20 0.168 1.1973 

db25 0.2253 0.3407 

db30 0.2253 0.3407 

 
Table 11 Error of each Equivalent Unbalance Identified in 

case 3 

Observing the error of each case with and 

without noise, the coefficients are quite close to 

the real behavior.  

 

7. Analysis of Results 

 

Once the coefficients were identified in section 

6, the vibrational response of the acceleration of 

the "journal" is simulated again in their 

respective Cartesian coordinates𝑋̈𝐽, 𝑌̈𝐽. Figures 

(3-6) show the comparison of the reference 

response and the different noise scenarios in 

which they were identified with the acceleration 

coefficients. With the figures it is corroborated 

that the error obtained in the system is minimal, 

having a very similar behavior between them. In 

figure (3) the black line corresponds to the real 

case, the segmented green line to the coefficients 

obtained by SINDy without noise, the magenta 

line to SINDy at 20db, the blue line to SINDy at 

25db and finally the red line to SINDy at 30db.  

In each of the figures (3-6) there are two graphs, 

the upper graph corresponds to the acceleration 

in X and the lower one to the acceleration in Y, 

for both graphs the abscissa axis is the time of 

the last 20 cycles of the simulation. 

 

 
 
Figure 4 Actual Acceleration Vs Identified base case with 

and without noise 
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Figure 5 Actual Acceleration Vs Identified case 1 with 

and without noise 

 

 
 

Figure 6 Actual Acceleration Vs Identified case 2 with 

and without noise 

 

 

 
 

Figure 7 Actual Acceleration Vs Identified case 3 with 

and without noise 

 

Similarly, with the obtained coefficients 

we simulate again to obtain the displacement 

orbits of each case, under the different noise 

conditions. In such a way that figures (7-10) are 

the different cases, where the dotted line is the 

radial clear, the black one the real case, the 

yellow one corresponds to the case without 

noise, the blue one to the case with noise of 

20db, the red one to 25db and the green one to 

30db. The axes of the figures correspond to the 

displacements. 

 

 
 

Figure 8 Actual displacement Vs Identified base case with 

and without noise 
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Figure 9 Actual displacement Vs Identified case 1 with 

and without noise 

 

 
 

Figure 10 Actual displacement Vs Identified case 2 with 

and without noise 

 

 
 

 

Figure 11 Actual displacement Vs Identified case 3 with 

and without noise 

 

The base case at different noise 

magnitudes was the one that departs the most 

from the real behavior, however, this is not 

significant in the general behavior of the 

displacement. For cases 1, 2 and 3 at different 

noise conditions, it is observed that the 

displacement is practically identical to the real 

one. 

 

8. Conclusions 

 

An approach of autonomous learning 

methodologies was applied to solve an 

aeronautical problem. The SINDy algorithm was 

applied employing a polynomial combinatorial 

search space. The study was successfully 

performed to identify the equivalent imbalance 

in a SFD type support. Four cases of different 

equivalent imbalances were identified at 4 

different noise conditions. The percentage of 

error presented in the identified coefficients is 

negligible, this is verified through the figures (3-

10), where it can be observed that the behavior 

of the displacements and accelerations between 

the real case and those identified with SINDy do 

not present significant differences neither 

quantitatively nor qualitatively.  

 

This work is an approach to solve 

engineering problems through machine learning 

methods, and it is an excellent first approach to 

use SINDy in rotodynamics problems. These 

methodologies are promising for solving more 

complex problems in the area of rotodynamics. 

We plan to use SINDy to solve inverse problems 

as future work. 
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