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Abstract  

 

Fractals connect immediately with chaos theory and 

dynamical systems and this brings us very quickly closer 

to a more harmonious and integral understanding of reality 

than the geometry used at the time, based on rectangles, 

circles, triangles, ellipses, this new geometry describes 

sinuous curves, spirals and filaments that twist on 

themselves giving elaborate figures whose details are lost 

in the infinite. In fact we can understand fractal geometry 

as the geometry of nature, of chaos and order, with forms 

and sequences that are locally unpredictable, but globally 

ordered, hence the importance of "intermittency" and 

"attractors" as information inherent in "iteration". 

 

 

 

Fractal, Chaotic, Recursive 

 

Resumen 

 

Los  fractales conectan de inmediato con la teoría del caos 

y a los sistemas dinámicos y esto nos acerca muy rápido a 

una comprensión un poco más armónica e integral de la 

realidad al contrario que la geometría utilizada entonces , 

basada en rectángulos, círculos, triángulos, elipses,esta 

nueva geometría describe sinuosas curvas, espirales y 

filamentos que se retuercen sobre sí mismos dando 

elaboradas figuras cuyos detalles se pierden en el 

infinito.De hecho podemos entender la geometría fractal 

como la geometría de la naturaleza, del caos y del orden, 

con formas y secuencias que son localmente 

impredecibles, pero globalmente ordenadas por ello la 

importancia de la “intermitencia” y los “atractores” como 

información inherente a la “iteración”. 

 

Fractal, Caótico, Recursivo

 
Citation: RAMOS-ESCAMILLA, María. Dichotomous representation of fractal recursivity. Journal-Mathematical and 

Quantitative Methods. 2021. 5-9:35-40. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Correspondence to Author (E-mail: ramos@rinoe.org) 

† Researcher contributing as first author. 

 

 

© RINOE–Spain                                                                                                     www.rinoe.org/spain    



36 
Article                                                    Journal-Mathematical and Quantitative Methods 

        December 2021, Vol.5 No.9 35-40 

 

 

RAMOS-ESCAMILLA, María. Dichotomous 

representation of fractal recursivity. Journal-Mathematical 

and Quantitative Methods. 2021 

ISSN-On line: 2531-2979 

RINOE® All rights reserved. 

 

Introduction 

 

Fractals are geometric structures that combine 

irregularity and structure, although many natural 

structures have fractal-like structures. A 

mathematical fractal is an object that has at least 

one of the following characteristics: it has detail 

on arbitrarily large or small scales, it is too 

irregular to be described in traditional geometric 

terms, it has exact or statistical self-similarity, its 

Hausdorff-Besicovitch dimension is greater than 

its topological dimension, or it is recursively 

defined. 

 

Fractal forms, the forms in which the parts 

resemble the whole, are present in the economic 

matter, together with symmetries (the basic 

forms of trends need only half the information of 

the prices on the market) and spirals (the forms 

of growth and development of the basic form 

towards the occupation of a larger space), i.e. 

they enable catastrophes (extraordinary events) 

that give rise to new, more complex realities. 

 

But fractal forms (from this intuitive 

conception) are not only present in the spatial 

forms of objects but are also observed in the 

evolutionary dynamics of complex systems, 

which consist of cycles (in which, starting from 

a simple established reality, they end up creating 

a new, more complex reality) which in turn form 

part of more complex cycles which in turn form 

part of the development of the dynamics of 

another great cycle, and the dynamic evolutions 

of all these cycles present the similarities typical 

of chaotic systems. 

 

Fractal creation 

 

We start with the Fractal Matrix: 

 

We start with the Fractal Matrix: 

 

North:108° → 90° − ∫
𝑛𝑒

𝑑(𝑁𝐸)

𝑁

𝑒
 

 

South:270° → 180° − ∫
𝑒𝑠

𝑑(𝐸𝑆)

𝑒

𝑆
  

 

East: 360° → 270° − ∫
𝑜𝑠

𝑑(𝑂𝑆)

𝑂

𝑆
  

 

West: 90° → 360° − ∫
𝑁𝑂

𝑑(𝑁𝑂)

𝑁

𝑂
  

 

By entering the Fractal Pivot, we get: 

 

𝑓(𝑃𝑉) = ∫ ,
lim (180°−90°,270°−180°,360°−270°,90°−360°)

lim 𝑑
(

𝑛𝑒
𝑁𝐸 

𝑒𝑠
𝐸𝑆

 
𝑜𝑠
𝑂𝑆

 
𝑛𝑜
𝑁𝑂

)

1(𝑃𝑉)
𝑝𝑣

       (1) 

 

The prototype of R3 can be the following 

Fractal: 

 

 
 

Hamiltonian: 

 

𝑓(𝑃𝑉) = �̅� |

𝑑(180°→90)

𝑑
𝑛𝑒
𝑁𝐸
1

𝑥

𝑑(270°−180°)

𝑑
𝑒𝑠
𝐸𝑆
1

𝑦

𝑑(360°−270°)

𝑑
𝑜𝑠
𝑂𝑆
1

𝑧

𝑑(90°−360°)

𝑑
𝑛𝑜
𝑁𝑂
1

𝛼

|        (2) 

 

We derive the level of fractal recursion for 

the finitesimal body: 

 

𝑅𝐻̅̅ ̅̅  𝑑𝑒𝑔𝑟𝑒𝑒1 = [

𝜕𝑑(90°)

𝑑𝐼𝐼𝑛𝑒(−𝑁𝐸)
,

𝜕𝑑(90°)

𝑑 𝑒𝑠(−𝐸𝑆)
,

𝜕𝑑(90°)

𝑑 𝑜𝑠(−𝑂𝑆)
,

𝜕𝑑(270°)

𝑑 𝑛𝑜(−𝑁𝑂)
 

1(𝑥,𝑦,𝑧)

𝛼−1

]

             

𝑅𝐻̅̅ ̅̅  𝑑𝑒𝑔𝑟𝑒𝑒2 = [
𝜕𝑑(90°)𝐼𝐼𝐼

𝑑𝐼𝑉𝑛𝑒→𝑒𝑠→𝑜𝑠→𝑛𝑜

1−1 ∫(𝑥,𝑦,𝑧)

] [
207°

𝑛𝑜
] [

log(𝑃𝑉)

𝑙𝑚 (𝑝𝑣)
] 

            

𝑅𝐻̅̅ ̅̅  𝑑𝑒𝑔𝑟𝑒𝑒3 =
𝜕𝑑3−1[log 90°]

1

𝑑(𝛼)
 ∫

𝑛𝑒→𝑒𝑠→𝑜𝑠

(𝑥,𝑦,𝑧)

 𝑑(𝛼) {
𝑛𝑒−207°

𝑎𝑛𝑡𝑖 log
𝑃𝑉

𝑝𝑣

} 

            

𝑅𝐻̅̅ ̅̅  𝑑𝑒𝑔𝑟𝑒𝑒4 ∫ [
1(𝑛𝑒,𝑒𝑠,𝑜𝑠)

𝑑(
1

𝛼
)

]
−90°

𝑑(𝛼)
+

log(𝑃𝑉)−𝑙𝑚 (𝑝𝑣)

𝑛𝑜− 270°
    

 

The rescaled range would be the perfect 

sphere: 

 

We determine the finite walk: 

 
∝𝑔=

𝛽(𝑋),𝛽1(𝑋𝑛+1)

𝛽2(𝑋𝑛−1)
   ∫ [

(𝑛+1)

𝑛−1
]

1
2⁄  

+ {
1

2
} 

lim 𝛽1 (𝑛+1)𝜆

lim 𝛽2  (𝑛−1)𝜆 

𝛽1+𝛽2+𝛽𝑛

𝛽𝑛−𝛽2−𝛽1
    [

∝𝑦

∝−𝑔
]

1
2⁄  

+  
𝑑

𝑑𝑥
 … … … … … . ∝+      

(3) 

 

We integrate the fractal recursion level for 

the infinite body: 

 

∫
𝑛𝑒

−𝑒𝑠
+

𝑜𝑠

−𝛼

1
+

90°−𝛼
𝑑

𝑥−1

=
log(𝑃𝑉)−𝑙𝑚 (𝑝𝑣)

𝑛𝑜− 270°
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= ∫
𝑛𝑒+𝛼

−𝑒𝑠+𝑜𝑠

1
+

90°𝛼

𝑥−1

𝛼
+

270°
log(𝑃𝑉)

𝑙𝑚 (𝑝𝑣)

    

     

= ∫
−𝑛𝑒

𝑒𝑠
(

𝛼

𝑜𝑠
)

1
−

𝛼𝑥+1

90°

𝑑𝑥

−  
𝑎𝑛𝑡𝑖 log 𝑃𝑉−𝑝𝑣

270°
   

          

= ∫
𝑛𝑜

𝑒𝑠
−

𝑜𝑠

−𝛼
−

1

𝑥
𝛼𝑥−1

𝑑(𝑥)

−
𝑃𝑉−𝑝𝑣

𝑎𝑛𝑡𝑖 log(270°)
    

          

= ∫
−𝛼−𝑎𝑛𝑡𝑖 log 𝑥

𝑛𝑒

𝑒𝑠
+

𝑜𝑠

−𝛼

+
𝑑(𝑃𝑉

−𝜕

𝑝𝑣
)

𝜕(270°)
[

1

𝑥
]   

          

= [
1

𝑥
𝑛𝑒
𝑒𝑠
𝑜𝑠
−𝛼

] [

𝑃𝑉

𝑝𝑣

𝑎𝑛𝑡𝑖 log
270°

𝑥

] = [
𝑎𝑛𝑡𝑖 log

𝑛𝑒
𝑒𝑠
𝑜𝑠

𝑎𝑛𝑡𝑖 log

[
1

−𝑥
]

270°+𝑥
]  

          

=
log 𝑛𝑒

lm 𝑒𝑠−lm (𝑒𝑠)
−

270°
1

𝑥

     

     

=
anti log 𝑛𝑒−𝑒𝑠+𝑜𝑠

270°−𝑥
  

 

=
𝑛𝑒−𝑒𝑠+𝑜𝑠

270°
= 𝛼   

 

And we return to R3 with limits in Ln-4, 

represented as follows: 

 

 
 

We determine the Infinite Walk: 

 

∝−g =  
n1(λ),n1(λn+1−∝)

n2(λn−1+α)
 ∫ [

𝑛+1

𝜆
 

𝜆

𝑛−1
] + 

1
2⁄

1
𝜆⁄

=  
𝛽0….𝛽𝑛

∝𝑔+∝𝑔
+ 

𝑑

𝑑𝑥
… .

lim 𝑛1(𝑛+1)𝜆−1

lim 𝑛2(𝑛−1)𝜆
∝−          (4) 

 

We represent the complete fractal 

structure: 

 

 
 

We dimension your fractal network: 

 

∫ [
→90°

𝜆− 𝐸(𝑁)
] + [

2 →90°

𝜆− 𝑁(0)
] + [

3 →90°

𝜆− 𝐸(𝑁)
] + [

4 →90°

𝜆− 𝑁(0)
] + [

5 →90°

𝜆− 𝐸(𝑁)
] +

 [
6 →90°

𝜆− 𝑁(0)
] +  [

7 →135°

𝜆− 𝑆(𝐸)
] + [

8 →135°

𝜆− 0(𝑆)
] + [

9 →90°

𝜆− 0(𝑆)
] + [

10 →45°

𝜆− 𝑆(𝐸)
] +

[
11 →45°

𝜆− 0(𝑆)
] + [

12 →45°

𝜆− 𝑆(𝐸)
] + 

𝑑

𝑑∝
                  (5) 

 

 

 

We obtain the Chaotic fractal - which 

contains an imaginary part: 

 

R=6   

 

I= 1 

 

*HB with Brownian
1

2
 

 

𝑅𝑟 = (𝑓) ∫
𝑑

𝑑

6

1
   

 

Fractional fractal network: 

 

𝒇 =  {
1 ↔(90°)𝐼𝑉

𝜆−[
 𝐸℩℩℩

6
]

+  
7 ↔(135°)𝐼𝐼

[
 𝐸

0(2)
]

+ 
9 ↔(45°)𝐼𝑉

𝜆−[
 0℩℩

𝐸℩℩(4)
]

} 
𝒅

𝒅∝
      (6) 
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And we obtain the dichotomous ranges 

from 1 to 0 in their real part: 

R=8 

 

I= 3     * Imaginary are all the unbroken lines 

 

 
 

* It is fractal. 

 

𝑅𝑟 = (𝑓) ∫
𝑑

𝑑′′

8

3
  

 

We implement the Fourier scaling with 

Fresnel scheme for ln-4: 

 

𝑓 =  

→1

𝑑(90°)
 

→7

𝑑(135°)
 

→9

𝑑(45°)

1
𝜆⁄

    [
𝐸𝐼𝑉+ 0𝐼𝐼

6 [0(2)][𝐸𝐼𝐼(4)]
] +  

𝑑

𝑑∝
   

 

𝑓 =  

→1

𝑑 (1)
  

→7

𝑑(1)
  

→9

𝑑(1)

1
𝜆⁄

  [
𝐸𝐼𝑉−𝐸𝐼𝐼(4)+ 0𝐼𝐼

12 (0)
] +  

𝑑

𝑑∝
  

 

𝑓 =  

1→7→9

𝑑´´´(3)

1
𝜆⁄

 [
4(𝐸𝐼𝐼+0𝐼𝐼)

12

−0

] +  
𝑑

𝑑∝
    

  

𝑓 =
1→7→9

3

−𝑑´´´

[
4(𝐸→0)𝐼𝑉

12
−0
1
𝜆

] +
𝑑

𝑑𝛼
  

 

𝑓 =

[(
1→7→9

3(4)+[
𝐸→0
−0

]
)]

𝐼𝑉
1
𝜆

.|𝑑´´´|

−12
+

𝑑

𝑑𝛼
            

     

𝑓 =
1→7→9
(12)+𝐸

−12

𝐼𝑉

1
(𝑑´´´)

𝜆
+

𝑑

𝑑𝛼
     

               

𝑓 =
1+1+1

12+𝐸+12
(

𝐼𝑉

1

𝜆
)

(3)

𝑑
+

𝑑

𝑑𝛼
    

     

We get the Complex Fractal that has an 

imaginary part with interaction. 

 
 

R= 3 

 

I=2    

 

* It is fractal 

 

𝑅𝑟 = (𝑓) ∫
𝑑

𝑑′′

3

2
  

 

Identify the Infinitesimal Indiscriminant. 

 
𝑪𝟏  →  𝑪𝟏𝟖  =  ∫ +

𝟐

𝟏
𝟐⁄

𝟏
𝜶

̅

 ∫ +
𝟒

𝟏
𝟐⁄

𝟏
𝜶

̅

 ∫ +
𝟏

𝟏
𝟐⁄

𝜹 𝒅
𝒅 𝜶

̅̅ ̅̅ ̅

 ∫ +
𝟒

𝟏
𝟐⁄

𝟏
𝜶

̅

 ∫ +
𝟏

𝟏
𝟐⁄

𝜹 𝒅
𝒅 𝜶

̅̅ ̅̅ ̅

 ∫ +
𝟐

𝟏
𝟐⁄

𝟏
𝜶

̅

 ∫ +
𝟒

𝟏
𝟐⁄

𝟏
𝜶

̅

 ∫ +
𝟏

𝟏
𝟐⁄

𝜹 𝒅
𝒅 𝜶

̅̅ ̅̅ ̅

 ∫ +
𝟒

𝟏
𝟐⁄

𝟏
𝜶

̅

 ∫ +
𝟏

𝟏
𝟐⁄

𝜹 𝒅
𝒅 𝜶

̅̅ ̅̅ ̅

    

 

∫ +
𝟐

𝟏
𝟐⁄

𝟏

𝜶

̅

 ∫ +
𝟒

𝟏
𝟐⁄

𝟏

𝜶

̅

 ∫ +
𝟏

𝟏
𝟐⁄

𝜹 𝒅

𝒅 𝜶

̅̅ ̅̅

 ∫ +
𝟒

𝟏
𝟐⁄

𝟏

𝜶

̅

 ∫ +
𝟏

𝟏
𝟐⁄

𝜹 𝒅

𝒅 𝜶

̅̅ ̅̅

 ∫ +
𝟐

𝟏
𝟐⁄

𝟏

𝜶

̅

 ∫ +
𝟒

𝟏
𝟐⁄

𝟏

𝜶

̅

 ∫ +
𝟏

𝟏
𝟐⁄

𝜹 𝒅

𝒅 𝜶

̅̅ ̅̅

 𝞷𝟐                       (7) 

 

We use the Dichotomous Variables - 

isolated each in its fractal iteration: 

 

 
log 1 +  ln 2

0.618⁄ = 1.12  

 
log 2 +  ln 4

0.618⁄ = 2.73 

 
log 3 +  ln 1

0.618⁄ = 0.77 

 
log 4 +  ln 4

0.618⁄ = 3.22 

 
log 5 +  ln 1

0.618⁄ = 1.13 

 
log 6 +  ln 2

0.618⁄ = 2.38 

 
log 7 +  ln 4

0.618⁄ = 3.61 

 
log 8 +  ln 1

0.618⁄ = 1.46 
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log 9 +  ln 4
0.618⁄ = 3.79 

 
log 10 +  ln 1

0.618⁄ = 1.62 

 
log 11 +  ln 2

0.618⁄ = 2.81 

 
log 12 +  ln 4

0.618⁄ = 3.99 

 
∑ de dichotomous var. = 45.77 Real 

 

Rank = number of var. 
 

∑

𝑟𝑎𝑛𝑔𝑜
=  

45,77

18
 = 2.54   Imaginary 

 

Thus, a fractal structure satisfies one or 

more of the following properties: 

 

(i) It possesses detail at all scales of 

observation of measurable risk at 2.4%, it 

possesses some kind of self-similarity, 

possibly statistically acceptable at 45%, its 

fractal structure is larger than its 

topological dimension and its algorithm 

serving to describe a fractal structure is 

very simple, and recursive in character. 

 

Conclusions 

 

In an attempt to integrate the aspects that are 

most relevant in a large number of definitions, 

the following definition is proposed: Fractals are 

shapes (either found in nature, or mathematically 

created, or derived from the graphical 

characterisation of the behaviour of a system), 

which possess an irregularity, expressed in a 

non-integer dimensionality, which is maintained 

and is characteristic at different scales of 

analysis, thus fulfilling one of their most 

remarkable qualities, self-affinity, which means 

that the part is similar to the whole. 

 

Now that we have a definition with which 

we can identify a fractal object, we can analyse 

its fundamental characteristic, namely self-

similarity. A structure is said to be self-similar if 

it can be arbitrarily cut into small pieces, each of 

which is a small replica of the whole structure.  

 

 

 

 

 

Strictly speaking, the concept of self-

similarity applies only to mathematical fractals, 

while in natural or physical fractals (those found 

in nature such as a fern leaf, a bronchial 

arborisation, blood capillaries, etc.), the concept 

of self-similarity applies. ) the concept of self-

affinity applies, since their fractality is only 

statistical and they possess, consequently, an 

anisotropic scaling (which does not have the 

same properties in all dimensions of analysis), 

which does not allow an amplified part of a 

figure to maintain exactly the characteristics of 

the figure as a whole. 

 

It is interesting to note that the irregularity 

of fractal objects becomes a particular 

characteristic of the object and accounts for the 

similarity of its parts to the whole, regardless of 

the scale of analysis used. 
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