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Abstract 

Response Surface Methodology has been widely used to 

solve robust parameter problems that include control 
variables such as quantity of material, temperature, 

pressure, time, etc. and noise variables difficult or 

impossible to control such as humidity, room 

temperature, etc. The noise variables included in the 

problems so far have been quantitative. However, these 

noise variables could be qualitative: type of machine, 

operator, type of supplier, etc. The article proposes a 

response surface methodology when there is a qualitative 

noise factor. The first steps of the investigation are 

explained in detail: construction of the general regression 

model, assumptions of the model, design of the steps of 

the methodology, simulations using the methodology and 

the solution of a case with one quantitative control 

variable and one qualitative noise variable, in addition to 

results that demonstrate the effectiveness of the 

methodology. 

Response surface, Qualitative noise variables, Dual 

response surface methodology 

Resumen 

La Metodología de Superficie de Respuesta ha sido 

ampliamente utilizada para resolver problemas de 
parámetros robustos que incluyan variables de control 

como cantidad de material, temperatura, presión, tiempo 

etc. y variables de ruido difíciles o imposibles de 

controlar como humedad, temperatura ambiente, etc. Las 

variables de ruido incluidas en los problemas hasta ahora 

han sido cuantitativas. Sin embargo, éstas podrían llegar 

a ser cualitativas: tipo de máquina, operador, tipo de 

proveedor, etc.  El presente artículo plantea una 

metodología de superficie de respuesta cuando se tiene 

un factor de ruido cualitativo. Se explica de manera 

detallada los primeros pasos de la investigación: 

construcción del modelo general de regresión, supuestos 

del modelo, diseño de los pasos de la metodología , 

simulaciones empleando la metodología y la solución de 

un caso con una variable de control cuantitativa y una 

variable de ruido cualitativa, además de resultados que 

demuestran la efectividad de la metodología.. 

Superficie de respuesta, Variables de ruido 

cualitativas, Metodología de superficie de respuesta 

dua 
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Introduction 

 

The response surface methodology is a set of 

statistical and mathematical techniques used in 

the analysis and modeling of problems in which 

a study variable is affected by other variables.  

 

The origins of the response surface 

methodology (MSR) refer to the work of Box 

and Wilson (1951), but it has been during the 

last 20 years that this methodology has 

achieved considerable development, both in 

theoretical aspects and in applications in 

scenarios real.  

 

Myers and Montgomery (2009) 

establish that the MSR provides well-

established statistical techniques that can be 

used to implement the robust parameter design 

proposed by Taguchi (1986) and overcome its 

limitations.  

 

The main objective of robust design is 

to find the optimal level of the controllable 

factors in a process or product in order that 

noise or non-controllable factors do not affect 

the process. Nowadays, statistical applications 

for process optimization are a useful tool used 

by most companies to optimize the average of 

their processes and decrease the variability.  

 

Previously, problems of robust factors 

have been solved using the response surface 

method with quantitative noise factors, however 

there is no record of solved problems where the 

noise factors are qualitative.  

 

The ultimate goal of the MSR is to 

determine the optimum operating conditions of 

the system or to determine a region of the factor 

space in which the operating requirements are 

met (Montgomery, 2005). 

 

To perform the response analysis, many 

authors have proposed the use of separate 

models to measure the mean and variance. This 

method, introduced by Myers and Carter 

(1973), it is called a dual response surface 

where the mean can be optimized and 

simultaneously minimizing the variance as 

shown in figure 1. 

 

 

 

 

 

 
 
Figure 1 Graphic de contornos y de superficie de 

respuesta 

Source: Minitab  

 

Considering the second-degree response 

surface model that includes a control factor (x) 

and one of qualitative noise (z) results in 

equation 1. 

 

             
               (1) 

 

Where the betas represent the regression 

coefficients of the effects of the control factor, 

the deltas represent the coefficients of the noise 

factor and the interaction between the control 

factor and the noise and the epsilon the random 

error of the model.  

 

The noise factor is a random variable 

whose probability distribution, its expected 

value and its variance are not usually known. 

Applying the operator of the expected value and 

the variance, we obtain equations 2 and 3. 

 

                
                       (2) 

 

                         (3) 

 

Since the expected value and the 

variance of the noise variable z are not known, 

they have to be estimated from a representative 

sample of their possible values.  

 

The main objective of the research 

presented in this article is to develop a 

methodology that allows to optimize the mean 

and the variance simultaneously using the dual 

response surface method in problems with 

robust parameters that contain qualitative noise 

factors. 
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Development  

 

The steps that will be followed to define the 

dual response surface methodology with 

qualitative noise variables (MSRDVC) are: 

 

1. Define models of the response whose 

optimal solution can be known 

analytically. 

 

2. Use the models to simulate the response 

in the experimental runs according to an 

appropriate experimental design. 

 

3. Identify the probability distribution of 

qualitative noise variables. 

 

4. Obtain the solution that simultaneously 

optimizes the mean and the variance. 

 

5. Compare the solution obtained with the 

MSRDVC methodology with the 

solution obtained analytically to verify 

the effectiveness of the MSRDVC 

methodology. 

 

6. Validate the MSRDVC methodology in 

a real case. 

 

Methodology  

 

A case was analyzed that includes a quantitative 

control variable and a qualitative noise variable. 

The general model that was used is shown in 

equation 4 to describe the behavior of the 

response whose mean or expected value has a 

maximum of 15 at x = 1 as can be seen in figure 

2 graphically using Matlab® software. 

 

                          (4) 

 

These values of beta, delta and epsilon 

of the model that represent the coefficients of 

the control factor and noise respectively as well 

as the estimator of the random error of the 

model are obtained analytically by formulating 

an equation that contains a maximum or a 

minimum to be able to use it with function of 

test, and will change when this methodology is 

used in other cases that will be simulated in the 

future of the investigation.  

 

 

 

 

 

 

 
 
Figure 2 Test Model for Case 1 

Source: Own MathCad software 

 

Table 2 shows the modified composite 

central design (DCCM) of the simulation of the 

response for each corresponding experimental 

run. Its three parts are the factorial 22, the 

respective: axial points of the control factor and 

five central points. To simulate the response, a 

random number is generated using Excel® 

software in order to generate a normally 

distributed random variable with zero mean and 

a standard deviation of 10% of the optimal 

average response. This value of 10% was 

established considering that most of the random 

variation of the response is due to the noise 

factor. Therefore, the error must be relatively 

small. In such a way that the answer y was 

generated using equation 6 and adding the 

simulated random error. Table 1 also shows the 

mean and standard deviation calculated for the 

random error. 

 

 
 
Table 1 Composite Central Design to Simulate the 

Response 

X Z
Random 

number

Standardized 

Variable

Random 

Error
Y

-1 -1 0,93646 1,525715869 2,288574 7,2885738

1 -1 0,00291 -2,75779884 -4,1367 10,8633017

-1 1 0,510875 0,027262206 0,040893 -14,9591067

1 1 0,21197 -0,79960604 -1,19941 13,8005909

-1,41421 0 0,924493 1,435956139 2,153934 -11,9881154

1,41421 0 0,428414 -0,18041399 -0,27062 13,8715294

0 0 0,185245 -0,89555573 -1,34334 8,65666405

0 0 0,829078 0,950529528 1,425794 11,4257943

0 0 0,519708 0,049421135 0,074132 10,0741317

0 0 0,809583 0,876359828 1,31454 11,3145397

0 0 0,540677 0,102138419 0,153208 10,1532076

CCM design
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After obtaining by means of the 

simulation the answer corresponding to each 

experimental run of the experimental DCCM 

design, the response is introduced in the 

Minitab® software to obtain a linear regression 

model. We proceed to generate using Minitab® 

the linear regression model that fits the data 

obtained from the response. Then, from this 

general model, the response surfaces are 

obtained for both the mean and the variance. 

The graphic of the response surface of the mean 

was already shown in figure 2 and the graphic 

of the response surface of the variance is shown 

in figure 3. In this case, since there is only one 

control variable, these graphics instead of being 

surface they are linear graphics, the variance 

has its minimum at x = 1 with a value of 2.25. 

 

 
 
Figure 3 Graphic of variance 

Source: Own MathCad software 

 

The next step is to identify the 

distribution to which the data of the noise 

factors best fit, for our case it was assumed that 

the behavior of the noise factor would be a 

discrete uniform probability distribution. For 

this, the simulation of the noise factors was 

carried out using the Monte Carlo simulation 

method and thus be able to generate the levels 

of the factor and be able to calculate the mean 

and variance of the qualitative noise factor and 

be able to have complete the mathematical 

model proposed. Figure 4 shows the table 

where the simulation of the values that 

represent the noise factor levels using Excel® 

software was shown.  

 

In the first part we can observe the 

simulation of the noise factor generating a 

random number between 0 and 1 and then 

assign three possible different levels for the 

factor, level -1 if the number is between 0 and 

.33, level 0 if it is between 0.34 and .66 and 

finally level 1 if it is between .67 and 1.  

It also includes a summary of the mean, 

standard deviation and variance of the noise 

factor. 

 

 
 
Figure 4 Simulation of the Qualitative Noise Factor 

Source: Own Excel software 

 

Results 

 

Once the general model has been obtained in 

the Minitab® software and the mean and 

variance of the noise factor, Matlab® 

mathematical software is used to optimize the 

first and second degree models obtained when 

doing the dual response surface analysis where 

the equation of the mean and the variance in its 

general form is shown in equation 5 and 6 

respectively. 

 

                              (5) 

 

                        (6)

      

In addition it is important to calculate 

the simultaneous criterion and the optimal ideal 

weight, the simultaneous criterion allows to 

optimize together the mean and variance in the 

model for each of the fifteen simulations and at 

the end of the totals, the equation of this 

simultaneous criterion is shown in the equation 

7. Also an example of one of the fifteen 

equations is shown in equation 8 for the mean 

and in equation 9 for the variance. 

 

                                      (7) 

 

                                    (8) 

 

                                    (9) 

 

The results of the first simulation with a 

control factor and a qualitative noise factor with 

a behavior of a uniform distribution are shown 

in table 2, where the results of 15 simulation 

runs are shown.  
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The first two columns include the mean 

of the noise factor E (z) and simulated variance 

V (z) and in the rest the maximum value of the 

mean and the minimum value of the variance 

are shown when optimized independently.  

 

 
 
Table 2 Summary of Simulation Results 

 

The proximity of the results of the 

simulation with the best known response is 

verified, in order to validate its functionality, 

the known average response for the first 

simulation model was 15, if we compare the 

value of 15.1060 the total percentage error 

would be .7%, added to an average variance of 

2.29 that is realit a low value and compared to 

the minimum value of the variance that is 2.25 

is 1.23%. This would result in the fact that if 15 

were the average length of a cable, the 

qualitative noise factor z could be estimated and 

the response optimized, being very close to the 

ideal response. 

 

Conclusions 

 

As can be seen in the summary table of results 

on average, all the results were close enough to 

the optimal response, which shows results very 

close to the optimal value of the average of 15 

and an average variance of 2.29.  

 

Regarding the results observed in this 

first simulation using the proposed 

methodology, encouraging results are observed 

and in the future, different cases will be 

simulated with the purpose of verifying that the 

methodology resolves different cases that may 

arise in the practice of the processes industrial.  
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z Vz E(max) V(min) max simultaneous opt weight

0,08 0,6804 14,5662 2,1217 14,5642 1/950

-0,01 0,717 14,1411 1,9997 14,1399 1/1200

0,05 0,6944 16,3876 2,6855 16,3858 1/900

-0,03 0,6758 16,3882 2,6857 16,3862 1/800

0 0,6868 13,286 1,7652 13,2832 1/750

0,13 0,7405 15,537 2,414 15,536 1/1500

0,06 0,562 15,8682 2,518 15,8665 1/1500

0,04 0,6852 16,2304 2,6342 16,229 1/1500

0,07 0,6516 14,7488 2,1753 14,7471 1/900

0,04 0,665 14,7906 2,1876 14,7889 1/850

0,08 0,5793 14,4536 2,0891 14,4518 1/850

0,05 0,6944 15,3928 2,3694 15,3911 1/900

-0,04 0,5842 14,4133 2,0774 14,4117 1/900

0,08 0,7208 14,7649 2,18 14,7632 1/850

0,12 0,5915 15,649 2,4489 15,6467 1/900

0,048 0,661927 15,10785 2,290113 15,10608667 1/1125


